T

VCERTIK

DaMetal

CertiK Assessed on Jan 7th, 2026

- JcERTIK SUMMARY | DAMETA1

CertiK Assessed on Jan 7th, 2026

DaMetal

The security assessment was prepared by CertiK.

Executive Summary
TYPES ECOSYSTEM METHODS
Vesting Ethereum (ETH) Formal Verification, Manual Review, Static Analysis
LANGUAGE TIMELINE
Solidity Preliminary comments published on 12/12/2025
Final report published on 01/07/2026
Vulnerability Summary

7 2 £ 0

Total Findings Resolved Multi-Sig Partially Resolved Acknowledged Declined

Centralization findings highlight privileged roles &
H 2 Centralization 1 Multi-Sig, 1 Acknowledged functions and their capabilities, or instances where the
D ; s
project takes custody of users’ assets.

Critical risks are those that impact the safe functioning of
. a platform and must be addressed before launch. Users
M 0 Critical

should not invest in any project with outstanding critical

risks.

Major risks may include logical errors that, under specific
Ho Major circumstances, could result in fund losses or loss of
project control.

Medium risks may not pose a direct risk to users’ funds,

0 Medium

but they can affect the overall functioning of a platform.

Minor risks can be any of the above, but on a smaller

Minor 1 Acknowledged scale. They generally do not compromise the overall

Y integrity of the project, but they may be less efficient than
other solutions.

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

2 Resolved, 2 Acknowledged

e Within industry best practices. They usually da not affect
the overall functioning of the code.

B 4 Informational

Y cerTiK TABLE OF CONTENTS | DAMETAL

TABLE OF CONTENTS | DAMETAL

I Summary

Executive Summary

Vulnerability Summary

Codebase
Audit Scope

Approach & Methods

I Review Notes

Overview

External Dependencies

Addresses

Privileged Functions

I Findings

DAM-02 : Initial Token Distribution

DAM-03 : Centralization Risks In MasterVestingContract.Sol

DAM-04 : Potential Insufficient Funds

DAM-01 : Discussion On The Vesting_Loigc

DAM-05 : Array Missing_pop’_Function

DAM-06 : Remove Redundant Condition "tgeTimestamp == 0"

DAM-07 : Inconsistency Between Code And Comment

I Formal Verification

Considered Functions And Scope

Verification Results

I Appendix

I Disclaimer

Y cerTIK CODEBASE | DAMETAL

CODEBASE | DAMETAL

I Repository

DaMetal

I Commit

o 10283008229e8669350cdf177f7f29a55846e504

o 78217a2f239aa42df2a8bbf19433b9cdd1800ac6

https://github.com/jawadijaz-commits/DaMeta1-DMU
https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/10283008229e8669350cdf177f7f29a55846e504
https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/78217a2f239aa42df2a8bbf19433b9cdd1800ac6

- Y cerTiK AUDITSCOPE | DAMETA1

AUDIT SCOPE ‘ DAMETA1

jawadijaz-commits/DaMetal-DMU

B masterVestingContract.sol
B DMuUTokenContract.sol
B DMuUTokenContract.sol

B masterVestingContract.sol

Y cerTiK APPROACH & METHODS | DAMETAL

APPROACH & METHODS | DAMETAL

This audit was conducted for DaMetal to evaluate the security and correctness of the smart contracts associated with the
DaMetal project. The assessment included a comprehensive review of the in-scope smart contracts. The audit was

performed using a combination of Static Analysis and Manual Review.
The review process emphasized the following areas:

« Architecture review and threat modeling to understand systemic risks and identify design-level flaws.

Identification of vulnerabilities through both common and edge-case attack vectors.
« Manual verification of contract logic to ensure alignment with intended design and business requirements.
« Dynamic testing to validate runtime behavior and assess execution risks.

« Assessment of code quality and maintainability, including adherence to current best practices and industry standards.

The audit resulted in findings categorized across multiple severity levels, from informational to critical. To enhance the
project’s security and long-term robustness, we recommend addressing the identified issues and considering the following

general improvements:

« Improve code readability and maintainability by adopting a clean architectural pattern and modular design.
« Strengthen testing coverage, including unit and integration tests for key functionalities and edge cases.

e Maintain meaningful inline comments and documentations.

« Implement clear and transparent documentation for privileged roles and sensitive protocol operations.

« Regularly review and simulate contract behavior against newly emerging attack vectors.

Y cerTiK REVIEWNOTES | DAMETAL

REVIEW NOTES | DAMETAL

I Overview

DaMetal is a Solidity-based vesting contract deployed on the Ethereum mainnet that manages the time-locked distribution
of dmuToken . Itimplements a vesting schedule that begins with an initial cliff period, followed by a linear release of tokens to

designated beneficiaries.

I External Dependencies

In DaMetal, the module inherits or uses a few of the depending injection contracts or addresses to fulfill the need of its
business logic. The scope of the audit treats third party entities as black boxes and assumes their functional correctness.

However, in the real world, third parties can be compromised and this may lead to lost or stolen assets.

Addresses

The following addresses interact at some point with specified contracts, making them an external dependency. All of following

values are initialized either at deploy time or by specific functions in smart contracts.
MasterVesting:

e dmuToken .

We assume these contracts or addresses are valid and non-vulnerable actors and implementing proper logic to collaborate

with the current project.
Also, the following library/contract are considered as the third-party dependencies:

e (@openzeppelin/contracts/
e ./libraries/BokkyPooBahsDateTimeLibrary.sol

e ./libraries/Errors.sol

I Privileged Functions

In the DaMetal project, the privileged roles are adopted to ensure the dynamic runtime updates of the project, which are

specified in the Centralization findings.

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according
to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which
should be clearly stated through the client's action/plan. Additionally, if the private keys of the privileged accounts are

compromised, it could lead to devastating consequences for the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.
Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of the

Timelock contract.

Y cerTiK FINDINGS | DAMETAL

FINDINGS | DAMETAL

7 0 £

Total Findings Critical Centralization Major Medium Minor Informational

This report has been prepared for DaMetal to identify potential vulnerabilities and security issues within the reviewed
codebase. During the course of the audit, a total of 7 issues were identified. Leveraging a combination of Static Analysis &

Manual Review the following findings were uncovered:

ID Title Category Severity Status
DAM-02 Initial Token Distribution Centralization Centralization 2/3 Multi-Sig

Centralization Risks In
DAM-03 Centralization Centralization Acknowledged
MasterVestingContract.Sol

DAM-04 Potential Insufficient Funds Logical Issue Minor Acknowledged
DAM-01 Discussion On The Vesting Loigc Logical Issue Informational Acknowledged
DAM-05 Array Missing pop Function Volatile Code Informational Acknowledged

Remove Redundant Condition tgeTimestamp] ;
DAM-06 Volatile Code Informational ® Resolved
== 0

DAM-07 Inconsistency Between Code And Comment Volatile Code Informational ® Resolved

Y cerTiK DAM-02 | DAMETA1

DAM-02 ‘ Initial Token Distribution

Category STEVEI Y Location Status

Centralization Centralization DMUTokenContract.sol (DaMetal): 65~66 2/3 Multi-Sig

I Description

All DMU tokens are transferred to a single target address, recipient . This introduces a centralization risk, as the
recipient address can distribute tokens without community consensus. If this address is ever compromised, an attacker
could steal and liquidate the tokens on the market, causing significant harm to the project.

I Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan
should be published in a public location that the community can access. The team should make efforts to restrict access to
the private keys of the deployer account or EOAs. A multi-signature (%4, ¥s) wallet can be used to prevent a single point of
failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting
schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

I Alleviation

[DaMetal, 12/19/2025]: The team have published a dedicated public transparency and governance page outlining the DMU

deployment and distribution flow, including:

« Main token contract deployment and verification approach

e Ownership and custody under a 2-of-3 multisignature wallet

Public disclosure of multisig wallet and signer addresses
o Pre-sale, vesting, and claim flows (with TBA placeholders where applicable)

« Reference to the whitepaper and a forthcoming transparency dashboard

The page also outlines key governance controls, including:

« Execution of privileged actions via multisignature custody with a minimum 24-hour timelock, and

« The renouncement of vesting contract ownership once vesting categories and recipient allocations are finalized and

verified DMU Token Transparency & On-Chain Governance: https://dmu.dametal.com/transparency

[CertiK, 01/07/2026];

The following deployment information was provided by the project team:

o The DaMetalUtilityToken contractis deployed at 0x2827d26a9eddc0a4b9bde8d152da59a730a402b4.

https://dmu.dameta1.com/transparency
https://etherscan.io/token/0x2827d26a9eddc0a4b9bde8d152da59a730a402b4

Y cerTiK DAM-02 | DAMETA1

« The token distribution plan is publicly available at: https://www.dmu.dametal.com/#tokenomics

Based on these deployment information, the audit team has verified the following:

e The deployed code of the DaMetalUtilityToken contract matches the source code in DMUTokenContract.sol from
GitHub commit ba2f24223aab18b188f2ceb57258d02d97cf97c3.

« The project utilizes a multi-sighature wallet at the following address: 0x9e3a4b50926e62b8a61ba0ac84ffcdb9c38061cf.

The multi-signature wallet is configured with three signers:

o Signer 1: OxEbOE6dC42Ba54154bBe399C3306818F34c94CADb
e Signer 2: 0xb73cele5591b5d461F315e62f1247BD889619E7h

e Signer 3: 0x7f809Fd074e0d903a39d8902e6bB25FaFO8F8F5h

The signature threshold is set to 2 out of 3 signers.

Upon contract deployment, the DaMetailUtilityToken contract mints a total supply of 5,000,000,000 DMU tokens (18

decimals). The initial supply is minted directly to the project’'s multi-signature wallet at
0x9e3a4b50926e62b8a61badac84ffcdb9c38061ct as part of the contract creation transaction

0x05a542b2c7019e7464f6838e7a0460a5a6633ab85d1eebabeb42bd486ff16dal.

As of Jan-07-2026 06:10:47 PM +UTC, the full token supply remains held by the multi-signature wallet, and no distributions

or transfers to external addresses have been observed.

https://www.dmu.dameta1.com/#tokenomics
https://github.com/jawadijaz-commits/DaMeta1-DMU/blob/ba2f24223aab18b188f2ceb57258d02d97cf97c3/DMUTokenContract.sol
https://etherscan.io/address/0x9e3a4b50926e62b8a61ba0ac84ffcdb9c38061cf
https://etherscan.io/tx/0x05a542b2c7019e7464f6838e7a0460a5a6633ab85d1eeba6eb42bd486ff16da1

G cerTiK DAM-03 | DAMETA1

DAM-03 ‘ Centralization Risks In MasterVestingContract.Sol

Category Severity Location Status

Centralization Centralization masterVestingContract.sol: 166 Acknowledged

I Description

Inthe MasterVesting contract, the _owner role has full authority over the functions shown in the diagram below. If the
_owner account is compromised, an attacker could abuse these privileges to create malicious vesting plans for attacker-
controlled addresses, allowing them to illegitimately claim the vesting tokens.

@CERTIK

Authenticated Role

_owner

DAM-03

External Calls

Errors.ZeroVestingMonths

External Calls

Errors.ZeroAddress

External Calls

Errors.BeneficiaryNotUnique

External Calls

Errors.EmptyList

External Calls

categoryList.push

External Calls

Errors. TGEPctTooHigh

Function External Calls

createCategory .push

External Calls

Errors.ZeroSupply

External Calls

Errors.SupplyExceeded

External Calls

Errors.ZeroAllocation

External Calls

Errors.CategoryExists

External Calls

Errors.InvalidCategoryld

External Calls

Errors.InvalidCliff

| DAMETAL

QY cerTiK DAM-03 | DAMETA1

The MasterVesting contract inherits from ownable2Step and ownable from the OpenZeppelin library. As a result, the

contract owner (_owner) also has authority over the following functions:

e transferOwnership()

e renounceOwnership()

In the latest version (78217a2f239aa42df2a8bbf19433b9cdd1800ac6), a new function has been added to the

MasterVesting contract that is restricted to the _owner :

e addBeneficiariesToCategory()

I Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of
decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully
manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend
centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts
with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (24, %) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.
« Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

« Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key
compromised,
AND

« A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

« Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;
AND

« Introduction of a DAO/governance/voting module to increase transparency and user involvement.
AND

« A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

https://github.com/jawadijaz-commits/DaMeta1-DMU/blob/78217a2f239aa42df2a8bbf19433b9cdd1800ac6/masterVestingContract.sol

G cerTiK DAM-03 | DAMETA1

Renouncing the ownership or removing the function can be considered fully resolved.

« Renounce the ownership and never claim back the privileged roles.
OR

« Remove the risky functionality.

I Alleviation

[DaMetal, 12/19/2025]:

The team is executing the short-term mitigation strategy outlined above to reduce the identified risk exposure:
Batch Processing (Implemented Code Update)

To support onboarding of a large number of seed investors across multiple launchpads and to prevent out-of-gas risks, the

vesting logic has been updated to support batch-based addition of beneficiaries:

« Avesting category may receive multiple add-beneficiary calls

« The contract enforces:

» No duplicate beneficiaries per category
« No madification of previously added beneficiaries
» No exceeding of the category’s total allocation

« Append-only behavior (only new beneficiaries may be added)

Governance & Ownership Controls

« \esting categories and their respective allocation percentages are finalized as defined in the whitepaper. Recipient
addresses will be finalized prior to TGE, and a newly implemented contract-level check prevents adding any new

beneficiaries after TGE, ensuring immutability of vesting allocations.

« All privileged operations prior to finalization are governed by a 2-of-3 multisignature wallet, backed by independent

hardware wallets
e Atimelock (minimum 24 hours) is applied to multisig executions to enhance transparency and reduce operational risk

« Once vesting categories and recipient allocations are finalized and verified prior to TGE, ownership of the vesting contract

will be renounced, ensuring immutability and eliminating future privileged control.

« Multisig transactions are monitored with alerts for additional transparency and risk reduction

[CertiK, 12/26/2025]: The team has proposed a mitigation plan that satisfies the recommended short-term approach.

However, the finding's status will only be updated following on-chain deployment and full verification of all deployment details.

G cerTIK DAM-04 | DAMETA1

DAM-04 ‘ Potential Insufficient Funds

Category Severity Location Status

Logical Issue Minor masterVestingContract.sol (DaMetal): 214~215, 274~275 Acknowledged

I Description

The createcategory() function allows the _owner to create a new vesting category and define its immutable allocations.
The categorySupplywei parameter specifies the total number of vesting tokens within that category that can be distributed
to beneficiaries.

However, the contract lacks any dmuToken transfer logic during category creation. If the contract is not sufficiently pre-
funded with vesting tokens, the claimAl1l() function will revert with InsufficientContractBalance whenever a
beneficiary’s claimable amount exceeds the contract's current token balance. This would block all beneficiaries from

claiming, requiring the operations team to ensure that the contract remains adequately funded at all times.

I Recommendation

It is recommended to fund the contract with sufficient vesting tokens whenever a new vesting category is created.

I Alleviation

[DaMetal, 12/19/2025]: The team acknowledged the issue and decided not to implement the recommended change in the

current engagement.

« \esting contract funding is executed via multisig wallets secured by hardware devices

« The team ensures sufficient tokens are deposited into the vesting contract before TGE and before enabling claims for any

category, preventing under-funding scenarios

G cerTiK DAM-01 | DAMETA1

DAM-01 ‘ Discussion On The Vesting Loigc

Category Severity Location Status

Logical Issue ® Informational masterVestingContract.sol (DaMetal): 328~329 Acknowledged

I Description

The tokensToClaim() function returns the claimable amount for a given category and beneficiary.

uint256 vestedMonths = getVestedMonths(tgeTimestamp, block.timestamp);

(cliff 1= @) {

(vestedMonths <= cliff) {
tgeAmount - tokensClaimed;

The vestedMonths value represents the number of months between the current timestamp and the constant

tgeTimestamp .
Under the current logic, linear vesting begins only when vestedMonths > cliff . Consider the following example:

e tgeTimestamp = 2025-01-01 00:00

e cliff =1 month

However, according to the current vested token calculation logic, the linear vesting always begins when vestedMonths >

cliff .
block.timestamp vestedMonths Condition Claimable
2025-02-01 00:00 1 1 <= cliff Only tgeAmount
2025-02-28 23:59 1 1 <= cliff Only tgeAmount
2025-03-01 00:00 > 2 > cliff First month of linear vesting

begins

This shows that linear vesting does not start precisely at the 1-month cliff boundary (> 2025-02-01 00:00). Instead, it
effectively begins one full month later at the moment when vestedMonths increments from 1 to 2. Consequently,
beneficiaries receive only the tgeAmount throughout the entire first month and up until the exact moment the second month

begins.

If the intended behavior is for linear vesting to start immediately at the 1-month mark, this condition introduces an unintended

one-month delay.

G cerTIK DAM-01 | DAMETA1

I Recommendation

We recommend discussing this behavior with the team to confirm whether this design is intentional and aligned with the

vesting specification.

I Alleviation

[DaMetal, 12/19/2025]: After further internal review, we confirm that the existing vesting logic is intentional and reflects our
business design. Linear vesting is designed to begin only after the cliff period has fully elapsed, rather than exactly at the cliff
boundary. This ensures that categories with a zero-month cliff do not begin linear vesting at TGE, preventing unintended
immediate vesting at launch and maintaining predictable initial token circulation. This behavior is consistent with our token

distribution strategy and will be clearly communicated to the community. Accordingly, no code changes were required for
DAM-01.

G cerTIK DAM-05 | DAMETA1

DAM-05 ‘ Array Missing pop Function

Category Severity Location Status

Volatile Code ® Informational masterVestingContract.sol (DaMetal): 78, 84, 87 Acknowledged

I Description

Arrays without the pop operation in Solidity can lead to inefficient memory management and increase the likelihood of out-of-
gas errors.

I Recommendation

Consider adding functionality to remove elements from the array to prevent it from becoming too large over the lifetime of the
contract.

I Alleviation

[DaMetal, 12/19/2025]: We acknowledge the informational finding noted in DAM-05. While no code changes are required at

this stage, the recommendation has been documented and incorporated into our internal guidelines and future reviews.

G cerTiK DAM-06 | DAMETA1

DAM-06 ‘ Remove Redundant Condition tgeTimestamp == 0

Category Severity Location Status

Volatile Code ® Informational masterVestingContract.sol (DaMetal): 301 ® Resolved

I Description

The constructor ensures that tgeTimestamp is always set to a non-zero value and is not in the past. Therefore, the runtime

check tgeTimestamp == @ in tokensToClaim() cannot be triggered and serves no practical purpose.

I Recommendation

It is recommended to remove this condition to improve code efficiency.

I Alleviation

[DaMetal, 12/19/2025]: The team heeded the advice and resolved the issue by removing the redundant condition
tgeTimestamp == 0 in commit 78217a2f239aa42df2a8bbf19433b9cdd1800ac6.

https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/78217a2f239aa42df2a8bbf19433b9cdd1800ac6

QY cerTIK DAM-07 | DAMETA1

DAM-07 ‘ Inconsistency Between Code And Comment

Category Severity Location Status

Volatile Code ® Informational masterVestingContract.sol (DaMetal): 142 ® Resolved

I Description

The constructor comment states that the TGE timestamp “MUST be in the future”, but the implementation only enforces

_tgeTimestamp < block.timestamp as invalid. As a result, a TGE timestamp equal to the deployment block timestamp is
allowed.

I Recommendation

It is recommended to update either the comment or the implementation to ensure they are consistent.

I Alleviation

[DaMetal, 12/19/2025]: The team heeded the advice and resolved the issue by by modifying the inconsistent code in
commit 78217a2f239aa42df2a8bbf19433b9cdd1800ach.

The condition _tgeTimestamp < block.timestamp has been updated to _tgeTimestamp <= block.timestamp inthe

maodified version (line 146), aligning the implemented logic with the associated comment and the intended behavior.

https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/78217a2f239aa42df2a8bbf19433b9cdd1800ac6

G cerTIK FORMAL VERIFICATION | DAMETAL

FORMAL VERIFICATION | DAMETAL

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire
contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they
guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

I Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.
Verification of ERC-20 Compliance
We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

e Functions transfer and transferFrom that are widely used for token transfers,

o functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens to

another account (i.e. to grant an allowance), and

« the functions balanceof and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows (note that overflow properties were excluded

from the verification):

Property Name Title

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance
erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers
erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly
erc20-transfer-false If transfer Returns false ,the Contract State Is Not Changed
erc20-approve-never-return-false approve Never Returns false
erc20-balanceof-succeed-always balance0f Always Succeeds

erc20-approve-false If approve Returns false ,the Contract's State Is Unchanged
erc20-balanceof-correct-value balanceof Returns the Correct Value
erc20-approve-correct-amount approve Updates the Approval Mapping Correctly
erc20-transfer-never-return-false transfer Never Returns false

erc20-allowance-succeed-always allowance Always Succeeds

- G cerTIK FORMAL VERIFICATION | DAMETAL

Property Name Title

erc20-allowance-correct-value allowance Returns Correct Value

erc20-transferfrom-false If transferFrom Returns false ,the Contract's State Is Unchanged
erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-totalsupply-correct-value totalsupply Returns the Value of the Corresponding State Variable
erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

) transferfFrom Fails if the Requested Amount Exceeds the Available
erc20-transferfrom-fail-exceed-balance |
Balance

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transferfrom-revert-zero-argument transferfFrom Fails for Transfers with Zero Address Arguments

erc20-balanceof-change-state balanceof Does Not Change the Contract's State
erc20-allowance-change-state allowance Does Not Change the Contract's State
erc20-totalsupply-change-state totalsSupply Does Not Change the Contract's State
erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Transfers

] transferFrom Fails if the Requested Amount Exceeds the Available
erc20-transferfrom-fail-exceed-allowance
Allowance

erc20-transferfrom-never-return-false transferFrom Never Returns false
I Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract DaMetalUtilityToken (DMUTokenContract.sol) In Commit
78217a2f239aa42df2a8bbf19433b9cdd1800ac6

@CERTIK

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name

erc20-transfer-exceed-balance

erc20-transfer-correct-amount

erc20-transfer-false

erc20-transfer-never-return-false

erc20-transfer-revert-zero

Detailed Results for Function transferFrom

Property Name

erc20-transferfrom-correct-allowance

erc20-transferfrom-false

erc20-transferfrom-fail-exceed-balance

erc20-transferfrom-revert-zero-argument

erc20-transferfrom-correct-amount

erc20-transferfrom-fail-exceed-allowance

erc20-transferfrom-never-return-false

Final Result RENENS

® True

® True

® True

® True

® True

Final Result RENES

® True

® True

® True

® True

® True

® True

® True

FORMAL VERIFICATION | DAMETAL

@CERTIK

Detailed Results for Function approve

Property Name
erc20-approve-never-return-false
erc20-approve-false
erc20-approve-correct-amount
erc20-approve-succeed-normal

erc20-approve-revert-zero

Detailed Results for Function balanceof

Property Name
erc20-balanceof-succeed-always
erc20-balanceof-correct-value

erc20-balanceof-change-state

Detailed Results for Function allowance

Property Name
erc20-allowance-succeed-always
erc20-allowance-correct-value

erc20-allowance-change-state

Detailed Results for Function totalSupply

Property Name
erc20-totalsupply-succeed-always
erc20-totalsupply-correct-value

erc20-totalsupply-change-state

Final Result

® True

® True

® True

® True

® True

Final Result

® True

® True

® True

Final Result

® True

® True

® True

Final Result

® True

® True

® True

Remarks

REINENS

RENENS

RENENS

FORMAL VERIFICATION | DAMETAL

QY cerTIK FORMAL VERIFICATION | DAMETAL

Detailed Results For Contract DaMetalUtilityToken (DMUTokenContract.sol) In Commit

10283008229e8669350cdf177{7f29a55846e504

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-exceed-balance ® True
erc20-transfer-correct-amount ® True
erc20-transfer-false ® True
erc20-transfer-never-return-false ® True
erc20-transfer-revert-zero ® True

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-correct-allowance ® True
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-false ® True
erc20-transferfrom-never-return-false ® True

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-correct-value ® True
erc20-totalsupply-succeed-always ® True

erc20-totalsupply-change-state ® True

@CERTIK

Detailed Results for Function allowance

Property Name Final Result
erc20-allowance-succeed-always ® True
erc20-allowance-change-state ® True
erc20-allowance-correct-value ® True

Detailed Results for Function balance0of

Property Name Final Result

erc20-balanceof-correct-value ® True
erc20-balanceof-succeed-always ® True
erc20-balanceof-change-state ® True

Detailed Results for Function approve

Property Name Final Result

erc20-approve-correct-amount ® True
erc20-approve-never-return-false ® True
erc20-approve-revert-zero ® True
erc20-approve-succeed-normal ® True

erc20-approve-false ® True

Remarks

RENES

RENES

FORMAL VERIFICATION | DAMETAL

G cerTIK APPENDIX | DAMETAL

APPENDIX | DAMETAL

I Finding Categories

Categories Description

) Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and
Volatile Code . o
may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

o Centralization findings detail the design choices of designating privileged roles or other centralized
Centralization
controls over the code.

I Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a
mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.
The following assumptions and simplifications apply to our model:

o Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

« We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which
allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well
as contract properties that are maintained by every observable state transition. Observable state transitions occur when the
contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed
by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean
connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually” (written <>), we use
the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

e requires [cond] -the condition cond , which refers to a function’s parameters, return values, and contract state
variables, must hold when a function is invoked in order for it to exhibit a specified behavior.
e ensures [cond] -the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition held

G cerTIK APPENDIX | DAMETAL

when it was invoked.

e invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at every

observable contract state.

e constraint [cond] -the condition cond , which refers to both \old and current contract state variables, is
guaranteed to hold at every observable contract state except for the initial state after construction (because there is no

previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) thatreturn true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.
Specification:
requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

also
requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance
Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

Ifthe transfer functionin contract DaMetalUtilityToken fails by returning false , it must undo all state changes it

incurred before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

G cerTIK APPENDIX | DAMETAL

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) thatreturn true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,
msg.sender)) - \old(amount)

|| (allowance(\old(sender), msg.sender) == \old(allowance(sender,
msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) thatsucceed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;
requires balanceOf(recipient) + amount <= type(uint256).max;
ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +
amount)
&& balanceOf (\old(sender)) == \old(balanceOf(sender) - amount);
also
requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

G cerTIK APPENDIX | DAMETAL

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must falil.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;
also

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function approve

QY cerTIK APPENDIX | DAMETAL

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) thatreturn true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

o the address in spender is not the zero address and

« the execution does not run out of gas.

Specification:

G cerTIK APPENDIX | DAMETAL

requires spender != address(0);

ensures \result;
reverts_only when false;

Properties related to function balanceof

erc20-balanceof-change-state

Function balanceof must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balance0f (owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceof must always succeed if it does not run out of gas.

Specification:

reverts_only when false;

Properties related to function allowance

erc20-allowance-change-state

Function 'allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

G cerTIK APPENDIX | DAMETAL

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function 'allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only when false;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalsupply function in contract DaMetalUtilityToken must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalsupply function must return the value that is held in the corresponding state variable of contract
DaMetalUtilityToken.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only when false;

G cerTIK DISCLAIMER | DAMETAL

DISCLAIMER | CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions
provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the
Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report
is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or
project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.
This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report
represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that
your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,
where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT
LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR
OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY
OTHER PERSON’'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY
SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

G cerTIK DISCLAIMER | DAMETAL

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR
RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR
CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND
MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS ARESULT OF THE USE OF ANY
CONTENT, OR (Il) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER'’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY
IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE ATHIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE ATHIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION
UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

Elevating Your \Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is
the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-
based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,
we're able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

000000

DaMetal Security Assessment | CertiK Assessed on Jan 7th, 2026 | Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

