
CertiK Assessed on Jan 7th, 2026

DaMeta1
Security Assessment

Executive Summary

Vulnerability Summary

2 Centralization 1 Multi-Sig, 1 Acknowledged
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks may include logical errors that, under specific

circumstances, could result in fund losses or loss of

project control.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

1 Minor 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

4 Informational 2 Resolved, 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY DAMETA1

CertiK Assessed on Jan 7th, 2026

DaMeta1

The security assessment was prepared by CertiK.

TYPES

Vesting

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Preliminary comments published on 12/12/2025

Final report published on 01/07/2026

7
Total Findings

2
Resolved

1
Multi-Sig

0
Partially Resolved

4
Acknowledged

0
Declined

TABLE OF CONTENTS DAMETA1

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

External Dependencies

Addresses

Privileged Functions

Findings

DAM-02 : Initial Token Distribution

DAM-03 : Centralization Risks In MasterVestingContract.Sol

DAM-04 : Potential Insufficient Funds

DAM-01 : Discussion On The Vesting Loigc

DAM-05 : Array Missing `pop` Function

DAM-06 : Remove Redundant Condition `tgeTimestamp == 0`

DAM-07 : Inconsistency Between Code And Comment

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS DAMETA1

CODEBASE DAMETA1

Repository

DaMeta1

Commit

10283008229e8669350cdf177f7f29a55846e504

78217a2f239aa42df2a8bbf19433b9cdd1800ac6

CODEBASE DAMETA1

https://github.com/jawadijaz-commits/DaMeta1-DMU
https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/10283008229e8669350cdf177f7f29a55846e504
https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/78217a2f239aa42df2a8bbf19433b9cdd1800ac6

AUDIT SCOPE DAMETA1

jawadijaz-commits/DaMeta1-DMU

masterVestingContract.sol

DMUTokenContract.sol

DMUTokenContract.sol

masterVestingContract.sol

AUDIT SCOPE DAMETA1

APPROACH & METHODS DAMETA1

This audit was conducted for DaMeta1 to evaluate the security and correctness of the smart contracts associated with the

DaMeta1 project. The assessment included a comprehensive review of the in-scope smart contracts. The audit was

performed using a combination of Static Analysis and Manual Review.

The review process emphasized the following areas:

Architecture review and threat modeling to understand systemic risks and identify design-level flaws.

Identification of vulnerabilities through both common and edge-case attack vectors.

Manual verification of contract logic to ensure alignment with intended design and business requirements.

Dynamic testing to validate runtime behavior and assess execution risks.

Assessment of code quality and maintainability, including adherence to current best practices and industry standards.

The audit resulted in findings categorized across multiple severity levels, from informational to critical. To enhance the

project’s security and long-term robustness, we recommend addressing the identified issues and considering the following

general improvements:

Improve code readability and maintainability by adopting a clean architectural pattern and modular design.

Strengthen testing coverage, including unit and integration tests for key functionalities and edge cases.

Maintain meaningful inline comments and documentations.

Implement clear and transparent documentation for privileged roles and sensitive protocol operations.

Regularly review and simulate contract behavior against newly emerging attack vectors.

APPROACH & METHODS DAMETA1

REVIEW NOTES DAMETA1

Overview

DaMeta1 is a Solidity-based vesting contract deployed on the Ethereum mainnet that manages the time-locked distribution

of dmuToken . It implements a vesting schedule that begins with an initial cliff period, followed by a linear release of tokens to

designated beneficiaries.

External Dependencies

In DaMeta1, the module inherits or uses a few of the depending injection contracts or addresses to fulfill the need of its

business logic. The scope of the audit treats third party entities as black boxes and assumes their functional correctness.

However, in the real world, third parties can be compromised and this may lead to lost or stolen assets.

Addresses

The following addresses interact at some point with specified contracts, making them an external dependency. All of following

values are initialized either at deploy time or by specific functions in smart contracts.

MasterVesting:

dmuToken .

We assume these contracts or addresses are valid and non-vulnerable actors and implementing proper logic to collaborate

with the current project.

Also, the following library/contract are considered as the third-party dependencies:

@openzeppelin/contracts/

./libraries/BokkyPooBahsDateTimeLibrary.sol

./libraries/Errors.sol

Privileged Functions

In the DaMeta1 project, the privileged roles are adopted to ensure the dynamic runtime updates of the project, which are

specified in the Centralization findings.

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which

should be clearly stated through the client's action/plan. Additionally, if the private keys of the privileged accounts are

compromised, it could lead to devastating consequences for the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of the

Timelock contract.

REVIEW NOTES DAMETA1

FINDINGS DAMETA1

This report has been prepared for DaMeta1 to identify potential vulnerabilities and security issues within the reviewed

codebase. During the course of the audit, a total of 7 issues were identified. Leveraging a combination of Static Analysis &

Manual Review the following findings were uncovered:

ID Title Category Severity Status

DAM-02 Initial Token Distribution Centralization Centralization 2/3 Multi-Sig

DAM-03
Centralization Risks In

MasterVestingContract.Sol
Centralization Centralization Acknowledged

DAM-04 Potential Insufficient Funds Logical Issue Minor Acknowledged

DAM-01 Discussion On The Vesting Loigc Logical Issue Informational Acknowledged

DAM-05 Array Missing pop Function Volatile Code Informational Acknowledged

DAM-06
Remove Redundant Condition tgeTimestamp

== 0
Volatile Code Informational Resolved

DAM-07 Inconsistency Between Code And Comment Volatile Code Informational Resolved

FINDINGS DAMETA1

7
Total Findings

0
Critical

2
Centralization

0
Major

0
Medium

1
Minor

4
Informational

DAM-02 Initial Token Distribution

Category Severity Location Status

Centralization Centralization DMUTokenContract.sol (DaMeta1): 65~66 2/3 Multi-Sig

Description

All DMU tokens are transferred to a single target address, recipient . This introduces a centralization risk, as the

recipient address can distribute tokens without community consensus. If this address is ever compromised, an attacker

could steal and liquidate the tokens on the market, causing significant harm to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

[DaMeta1, 12/19/2025]: The team have published a dedicated public transparency and governance page outlining the DMU

deployment and distribution flow, including:

Main token contract deployment and verification approach

Ownership and custody under a 2-of-3 multisignature wallet

Public disclosure of multisig wallet and signer addresses

Pre-sale, vesting, and claim flows (with TBA placeholders where applicable)

Reference to the whitepaper and a forthcoming transparency dashboard

The page also outlines key governance controls, including:

Execution of privileged actions via multisignature custody with a minimum 24-hour timelock, and

The renouncement of vesting contract ownership once vesting categories and recipient allocations are finalized and

verified DMU Token Transparency & On-Chain Governance: https://dmu.dameta1.com/transparency

[CertiK, 01/07/2026]:

The following deployment information was provided by the project team:

The DaMeta1UtilityToken contract is deployed at 0x2827d26a9eddc0a4b9bde8d152da59a730a402b4.

DAM-02 DAMETA1

https://dmu.dameta1.com/transparency
https://etherscan.io/token/0x2827d26a9eddc0a4b9bde8d152da59a730a402b4

The token distribution plan is publicly available at: https://www.dmu.dameta1.com/#tokenomics

Based on these deployment information, the audit team has verified the following:

The deployed code of the DaMeta1UtilityToken contract matches the source code in DMUTokenContract.sol from

GitHub commit ba2f24223aab18b188f2ceb57258d02d97cf97c3.

The project utilizes a multi-signature wallet at the following address: 0x9e3a4b50926e62b8a61ba0ac84ffcdb9c38061cf.

The multi-signature wallet is configured with three signers:

Signer 1: 0xEb0E6dC42Ba54154bBe399C3306818f34c94CADb

Signer 2: 0xb73ce1e5591b5d461F315e62f1247BD889619E7b

Signer 3: 0x7f809Fd074e0d903a39d8902e6bB25faF08F8F5b

The signature threshold is set to 2 out of 3 signers.

Upon contract deployment, the DaMeta1UtilityToken contract mints a total supply of 5,000,000,000 DMU tokens (18

decimals). The initial supply is minted directly to the project’s multi-signature wallet at

0x9e3a4b50926e62b8a61ba0ac84ffcdb9c38061cf as part of the contract creation transaction

0x05a542b2c7019e7464f6838e7a0460a5a6633ab85d1eeba6eb42bd486ff16da1.

As of Jan-07-2026 06:10:47 PM +UTC, the full token supply remains held by the multi-signature wallet, and no distributions

or transfers to external addresses have been observed.

DAM-02 DAMETA1

https://www.dmu.dameta1.com/#tokenomics
https://github.com/jawadijaz-commits/DaMeta1-DMU/blob/ba2f24223aab18b188f2ceb57258d02d97cf97c3/DMUTokenContract.sol
https://etherscan.io/address/0x9e3a4b50926e62b8a61ba0ac84ffcdb9c38061cf
https://etherscan.io/tx/0x05a542b2c7019e7464f6838e7a0460a5a6633ab85d1eeba6eb42bd486ff16da1

DAM-03 Centralization Risks In MasterVestingContract.Sol

Category Severity Location Status

Centralization Centralization masterVestingContract.sol: 166 Acknowledged

Description

In the MasterVesting contract, the _owner role has full authority over the functions shown in the diagram below. If the

_owner account is compromised, an attacker could abuse these privileges to create malicious vesting plans for attacker-

controlled addresses, allowing them to illegitimately claim the vesting tokens.

DAM-03 DAMETA1

Authenticated Role Function

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

_owner createCategory

Errors.ZeroVestingMonths

Errors.ZeroAddress

Errors.BeneficiaryNotUnique

Errors.EmptyList

categoryList.push

Errors.TGEPctTooHigh

.push

Errors.ZeroSupply

Errors.SupplyExceeded

Errors.ZeroAllocation

Errors.CategoryExists

Errors.InvalidCategoryId

Errors.InvalidCliff

DAM-03 DAMETA1

The MasterVesting contract inherits from Ownable2Step and Ownable from the OpenZeppelin library. As a result, the

contract owner (_owner) also has authority over the following functions:

transferOwnership()

renounceOwnership()

In the latest version (78217a2f239aa42df2a8bbf19433b9cdd1800ac6), a new function has been added to the

MasterVesting contract that is restricted to the _owner :

addBeneficiariesToCategory()

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

DAM-03 DAMETA1

https://github.com/jawadijaz-commits/DaMeta1-DMU/blob/78217a2f239aa42df2a8bbf19433b9cdd1800ac6/masterVestingContract.sol

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[DaMeta1, 12/19/2025]:

The team is executing the short-term mitigation strategy outlined above to reduce the identified risk exposure:

Batch Processing (Implemented Code Update)

To support onboarding of a large number of seed investors across multiple launchpads and to prevent out-of-gas risks, the

vesting logic has been updated to support batch-based addition of beneficiaries:

A vesting category may receive multiple add-beneficiary calls

The contract enforces:

No duplicate beneficiaries per category

No modification of previously added beneficiaries

No exceeding of the category’s total allocation

Append-only behavior (only new beneficiaries may be added)

Governance & Ownership Controls

Vesting categories and their respective allocation percentages are finalized as defined in the whitepaper. Recipient

addresses will be finalized prior to TGE, and a newly implemented contract-level check prevents adding any new

beneficiaries after TGE, ensuring immutability of vesting allocations.

All privileged operations prior to finalization are governed by a 2-of-3 multisignature wallet, backed by independent

hardware wallets

A timelock (minimum 24 hours) is applied to multisig executions to enhance transparency and reduce operational risk

Once vesting categories and recipient allocations are finalized and verified prior to TGE, ownership of the vesting contract

will be renounced, ensuring immutability and eliminating future privileged control.

Multisig transactions are monitored with alerts for additional transparency and risk reduction

[CertiK, 12/26/2025]: The team has proposed a mitigation plan that satisfies the recommended short-term approach.

However, the finding’s status will only be updated following on-chain deployment and full verification of all deployment details.

DAM-03 DAMETA1

DAM-04 Potential Insufficient Funds

Category Severity Location Status

Logical Issue Minor masterVestingContract.sol (DaMeta1): 214~215, 274~275 Acknowledged

Description

The createCategory() function allows the _owner to create a new vesting category and define its immutable allocations.

The categorySupplyWei parameter specifies the total number of vesting tokens within that category that can be distributed

to beneficiaries.

However, the contract lacks any dmuToken transfer logic during category creation. If the contract is not sufficiently pre-

funded with vesting tokens, the claimAll() function will revert with InsufficientContractBalance whenever a

beneficiary’s claimable amount exceeds the contract’s current token balance. This would block all beneficiaries from

claiming, requiring the operations team to ensure that the contract remains adequately funded at all times.

Recommendation

It is recommended to fund the contract with sufficient vesting tokens whenever a new vesting category is created.

Alleviation

[DaMeta1, 12/19/2025]: The team acknowledged the issue and decided not to implement the recommended change in the

current engagement.

Vesting contract funding is executed via multisig wallets secured by hardware devices

The team ensures sufficient tokens are deposited into the vesting contract before TGE and before enabling claims for any

category, preventing under-funding scenarios

DAM-04 DAMETA1

DAM-01 Discussion On The Vesting Loigc

Category Severity Location Status

Logical Issue Informational masterVestingContract.sol (DaMeta1): 328~329 Acknowledged

Description

The tokensToClaim() function returns the claimable amount for a given category and beneficiary.

 uint256 vestedMonths = getVestedMonths(tgeTimestamp, block.timestamp);

 ...

 if (cliff != 0) {

 if (vestedMonths <= cliff) {

 return tgeAmount - tokensClaimed;

 }

The vestedMonths value represents the number of months between the current timestamp and the constant

tgeTimestamp .

Under the current logic, linear vesting begins only when vestedMonths > cliff . Consider the following example:

tgeTimestamp = 2025-01-01 00:00

cliff = 1 month

However, according to the current vested token calculation logic, the linear vesting always begins when vestedMonths >

cliff .

block.timestamp vestedMonths Condition Claimable

2025-02-01 00:00 1 1 <= cliff Only tgeAmount

2025-02-28 23:59 1 1 <= cliff Only tgeAmount

2025-03-01 00:00 2 2 > cliff First month of linear vesting
begins

This shows that linear vesting does not start precisely at the 1-month cliff boundary (> 2025-02-01 00:00). Instead, it

effectively begins one full month later at the moment when vestedMonths increments from 1 to 2. Consequently,

beneficiaries receive only the tgeAmount throughout the entire first month and up until the exact moment the second month

begins.

If the intended behavior is for linear vesting to start immediately at the 1-month mark, this condition introduces an unintended

one-month delay.

DAM-01 DAMETA1

Recommendation

We recommend discussing this behavior with the team to confirm whether this design is intentional and aligned with the

vesting specification.

Alleviation

[DaMeta1, 12/19/2025]: After further internal review, we confirm that the existing vesting logic is intentional and reflects our

business design. Linear vesting is designed to begin only after the cliff period has fully elapsed, rather than exactly at the cliff

boundary. This ensures that categories with a zero-month cliff do not begin linear vesting at TGE, preventing unintended

immediate vesting at launch and maintaining predictable initial token circulation. This behavior is consistent with our token

distribution strategy and will be clearly communicated to the community. Accordingly, no code changes were required for

DAM-01.

DAM-01 DAMETA1

DAM-05 Array Missing pop Function

Category Severity Location Status

Volatile Code Informational masterVestingContract.sol (DaMeta1): 78, 84, 87 Acknowledged

Description

Arrays without the pop operation in Solidity can lead to inefficient memory management and increase the likelihood of out-of-

gas errors.

Recommendation

Consider adding functionality to remove elements from the array to prevent it from becoming too large over the lifetime of the

contract.

Alleviation

[DaMeta1, 12/19/2025]: We acknowledge the informational finding noted in DAM-05. While no code changes are required at

this stage, the recommendation has been documented and incorporated into our internal guidelines and future reviews.

DAM-05 DAMETA1

DAM-06 Remove Redundant Condition tgeTimestamp == 0

Category Severity Location Status

Volatile Code Informational masterVestingContract.sol (DaMeta1): 301 Resolved

Description

The constructor ensures that tgeTimestamp is always set to a non-zero value and is not in the past. Therefore, the runtime

check tgeTimestamp == 0 in tokensToClaim() cannot be triggered and serves no practical purpose.

Recommendation

It is recommended to remove this condition to improve code efficiency.

Alleviation

[DaMeta1, 12/19/2025]: The team heeded the advice and resolved the issue by removing the redundant condition

tgeTimestamp == 0 in commit 78217a2f239aa42df2a8bbf19433b9cdd1800ac6.

DAM-06 DAMETA1

https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/78217a2f239aa42df2a8bbf19433b9cdd1800ac6

DAM-07 Inconsistency Between Code And Comment

Category Severity Location Status

Volatile Code Informational masterVestingContract.sol (DaMeta1): 142 Resolved

Description

The constructor comment states that the TGE timestamp “MUST be in the future”, but the implementation only enforces

_tgeTimestamp < block.timestamp as invalid. As a result, a TGE timestamp equal to the deployment block timestamp is

allowed.

Recommendation

It is recommended to update either the comment or the implementation to ensure they are consistent.

Alleviation

[DaMeta1, 12/19/2025]: The team heeded the advice and resolved the issue by by modifying the inconsistent code in

commit 78217a2f239aa42df2a8bbf19433b9cdd1800ac6.

The condition _tgeTimestamp < block.timestamp has been updated to _tgeTimestamp <= block.timestamp in the

modified version (line 146), aligning the implemented logic with the associated comment and the intended behavior.

DAM-07 DAMETA1

https://github.com/jawadijaz-commits/DaMeta1-DMU/tree/78217a2f239aa42df2a8bbf19433b9cdd1800ac6

FORMAL VERIFICATION DAMETA1

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens to

another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows (note that overflow properties were excluded

from the verification):

Property Name Title

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-approve-never-return-false approve Never Returns false

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-transfer-never-return-false transfer Never Returns false

erc20-allowance-succeed-always allowance Always Succeeds

FORMAL VERIFICATION DAMETA1

Property Name Title

erc20-allowance-correct-value allowance Returns Correct Value

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transferfrom-revert-zero-argument transferFrom Fails for Transfers with Zero Address Arguments

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Transfers

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-never-return-false transferFrom Never Returns false

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract DaMeta1UtilityToken (DMUTokenContract.sol) In Commit
78217a2f239aa42df2a8bbf19433b9cdd1800ac6

FORMAL VERIFICATION DAMETA1

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-exceed-balance True

erc20-transfer-correct-amount True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-revert-zero True

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-correct-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-correct-amount True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-never-return-false True

FORMAL VERIFICATION DAMETA1

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-never-return-false True

erc20-approve-false True

erc20-approve-correct-amount True

erc20-approve-succeed-normal True

erc20-approve-revert-zero True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION DAMETA1

Detailed Results For Contract DaMeta1UtilityToken (DMUTokenContract.sol) In Commit
10283008229e8669350cdf177f7f29a55846e504

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-exceed-balance True

erc20-transfer-correct-amount True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-revert-zero True

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-correct-amount True

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-correct-value True

erc20-totalsupply-succeed-always True

erc20-totalsupply-change-state True

FORMAL VERIFICATION DAMETA1

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-change-state True

erc20-allowance-correct-value True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-correct-value True

erc20-balanceof-succeed-always True

erc20-balanceof-change-state True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-correct-amount True

erc20-approve-never-return-false True

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-false True

FORMAL VERIFICATION DAMETA1

APPENDIX DAMETA1

Finding Categories

Categories Description

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition held

APPENDIX DAMETA1

when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at every

observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is no

previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

 also

requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

If the transfer function in contract DaMeta1UtilityToken fails by returning false , it must undo all state changes it

incurred before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

APPENDIX DAMETA1

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) - \old(amount)

 || (allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +

amount)

 && balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);

 also

requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

APPENDIX DAMETA1

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;

also

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function approve

APPENDIX DAMETA1

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

APPENDIX DAMETA1

requires spender != address(0);

ensures \result;

reverts_only_when false;

Properties related to function balanceOf

erc20-balanceof-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

APPENDIX DAMETA1

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract DaMeta1UtilityToken must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract

DaMeta1UtilityToken.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX DAMETA1

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER DAMETA1

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER DAMETA1

Elevating Your Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is

the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

DaMeta1 Security Assessment CertiK Assessed on Jan 7th, 2026 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

